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EXECUTIVE SUMMARY 
Intro duction 

Birds are one of the best groups of animals for monitor ing the effects of climate change. They are 
day-time active, conspicuous, easy to identify, and are popular with many groups of people, including 
amateur birdwatchers and professional scientists. In many parts of Europe, their distr ibutions and 
numbers, as well as the timing of their migrations and breeding seasons, have been well monitored for 
decades. 

Migratory birds are likely to be more vulnerable than non-migrants because they can influenced 
by conditions in three different geographic locations: their breeding grounds, their wintering areas, and 
their migration routes. Individual birds also experience “carry-over effects,” such as when conditions 
experienced in wintering areas inf luence subsequent breeding success, or when conditions experienced 
on the breeding grounds inf luence subsequent over-winter survival. 

Furthermore, field evidence indicates that large numbers of migrants can be are killed by storms 
encountered when they are migrating. Climatologists predict that storms and other extreme events are 
likely to increase in frequency in the years ahead.  Therefore we can expect that migrants will suffer 
greater storm-induced losses, which could cause noticeable reductions in populations regardless of 
other climate changes. 

Re sponses o f mig ratory birds  to climatic ch ange s 

A growing body of f ield and laboratory evidence indicates that far from being a static and 
conservative trait; migration is a dynamic and flexible behaviour in birds that is greatly influenced by 
external factors.  Thus we can expect that in addition to population effects in migrants, migratory 
behaviour, itself, is likely to change in assoc iation with climate change.  And, indeed, many changes in 
migration already have been reported. Many migrants are migrating earlier in spring than formerly, 
and some are migrating later in autumn as well.  As a result, individuals of some species stay for 
longer on their European breeding areas. Most examples of shifts of increased migratory behaviour 
involve species that have extended their breeding ranges into higher latitude areas where over-
winter ing was not possible or was costly in the past. On the other hand, some species that once were 
entirely migratory are now partially migratory, with increasing numbers of individuals staying on their 
breeding grounds year-round. In yet other species, individuals are now migrating shorter distances 
than formerly, and are over-wintering farther north. One example of the latter is the increased 
proportion of White Storks that now over-winters in southern Spain, rather than migrating to Afr ica. In 
some species these changes may be benefic ial or neutral to populations.  In others they may be 
harmful.  Almost all of these changes are assoc iated with changes in food-availability, or with climatic 
conditions that are likely to affect food-supplies, such as milder winters.  

Some of the observed changes in migratory behaviour appear to represent immediate behavioural 
or “facultative” responses to prevailing conditions, whereas others may reflect genetic changes 
brought about by natural selection. Despite diff iculties of detecting the latter, there is evidence from a 
few  species that indicates a genetic basis for changes in migration timing, and, at least for one species, 
a genetic basis  for changes in migration intens ity and the direction of migratory travel. Most changes 
in migratory behaviour are likely to start as facultative responses and then become genetically based as 
natural selection acts over time. 

One situation that has come to light in studies of biological responses to climate change is that 
different plants and animals often do not respond at the same speed and magnitude to c limate change. 
As a result migratory birds that once arrived on their breeding areas when their food-supplies were 
reaching their peaks now arrive either too early or too late to take immediate advantage of this 
situation.  Furthermore, those arriving too late are likely to breed less successfully, resulting in 
population dec lines. 

The breeding ranges of some European birds are already shift ing north, as individuals withdraw 
from southern portions of their ranges, while others spread north at the northern limits of their ranges. 
A particular concern involving range shifts is the loss of mountain-top breeders, which may disappear 
from much of their range, as global warming reduces the extent of spec ific high-mountain habitats. 
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Some measures taken to combat the causes of climate change, such as the development of wind 
farms, could themselves severely impact migratory birds. This is particularly so if wind farms are sited 
improperly along major migration routes, where large numbers of migrants could then be killed by 
colliding with rotor blades. 

Suggested actio ns  

1. We recommend establishing a functional network of watchsites or “watchtowers” for 
monitoring changes in bird behaviour and assess ing bird-population trends in Europe. Considerating 
the relative geographic importance of certain s ites at a continental scale, as well as an ongoing 
tradition for migration monitor ing, these watchtowers should include at minimum: 

• Falsterbö, in southwestern Sweden  

• Fair Isle, in northern Scotland 

• Texel, in northwestern Holland 

• The Strait of Gibraltar, near Tarifa, Spain 

• Southern Italy, including the Strait of Messina 

• Elat, in southern Israel 

2. In addition to this network of monitoring sites, we recommend establishing a set of focal 
species whose populations and behaviour should be monitored because of their relationships with 
more-diff icult-to-follow but crit ical biological var iables, including overall biological diversity and 
changes to habitats of special interest, etc.  Specifically, we recommend the focused monitor ing of 
seabirds, wetland birds, diurnal birds of prey or raptors, other soaring birds, and several widespread 
and long-term studied songbirds.  

3. An increasing body of evidence suggests that as climate change alters existing landscapes 
current networks of natural areas will no longer hold many of the target species and habitats they were 
des igned to include. Complementary polic ies are needed. “Land custody” or, land stewardship via 
easements, is a flexible habitat-protection strategy that could be used to maintain crit ical landscape 
features, track changes in biodivers ity, engage the general public, and involve pr ivate landowners in 
natural resource conservation. Public interest in this land-use strategy could be increased w ith tax 
incentives and tax benefits for participating landowners.  An additional strategy designed to reduce 
species losses, would be to incorporate linear infrastructures inc luding power-line, road, and rail 
rights-of-ways, as a supplementary wildlife corridors for organisms moving in responses to climate 
change. 

4. Histor ically, most migration studies have occurred in the middle and northern latitudes of 
Europe. Whereas these studies need to continue, there is a particular need to increase the numbers of 
studies further south in southern Europe, where many migratory birds over-w inter, and where many 
others pass through while migrating between European breeding grounds and Afr ican winter ing areas. 
One particular ly good location for additional migration study is southern Spain, near the Strait of 
Gibraltar, through which an array of spec ies migrate in both spring and autumn. 
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1. INTRODUCTION 
Climatic change is a major factor that is likely to affect the earth’s ecosystems in the coming 

decades. The increase in global surface temperature in the last century was the largest in any century 
during the past 1,000 years.  This change in temperature has been associated w ith changes in weather 
patterns, including precipitation and snow cover, as well as changes in sea temperatures and sea level. 
Climate change is a phenomenon that currently can be recognized by many indicators. The impacts of 
climatic change affect not only spec ies and ecosystems but also human economy and society.  We face 
a potentially serious problem, both for us and our environments.   

There is compelling evidence that animals and plants have been affected by recent changes in 
climate. Migratory species, which travel long distances and are subject to a wide range of 
environmental influences and that rely on a wide range of natural resources, are particularly likely to 
be affected by climate change.  

The primary instrument for migratory species conservation is the Convention on the 
Conservation of Migratory Species of Wild Animals (Bonn 1979, ratified by 101 parties by 2007). 
CMS recognises that states have a duty to protect migratory species that live within or pass through 
their boundaries and that their effective management requires concerted action from all states in which 
a spec ies spends parts of its life-cycle. Under CMS framework, specif ic agreements can be made as 
Memoranda of Understanding among appropriate states. 

The Convention on the Conservation of European Wildlife and Natural Habitats (Bern, 1979) 
aims to conserve wild flora and fauna and their natural habitats, especially those species and habitats 
whose conservation requires the co-operation of several States. With the addition of Serbia and 
Armenia, the Bern Convention w ill have 47 Contracting Parties in 2008. By joining the Convention, 
States have undertaken to co-ordinate their efforts for the protection of the migratory spec ies listed in 
Appendices II and III whose range extends into their terr itories. The Bern Convention gives also 
special attention to the protection of areas of importance for those m igratory spec ies listed and, in 
particular, in relation to migration routes, such as winter ing, staging, feeding, breeding or moulting 
areas. 

The present report has been prepared for discussion by the “Group of Experts on Biodivers ity and 
Climate Change” of the Council of  Europe, set up under the Bern Convention. The report (1) asseses 
the current scientif ic evidence linking climate change and the behaviour, distr ibution, and abundance 
migratory spec ies of birds, (2) identif ies what effects climate change may have on migratory birds in 
the future, and (3) suggests an adaptive management strategy for the conservation of migratory species 
of birds and the phenomenon of bird migration itself, in the face of the climatic change.  

2. CLIMATE CHANGE  

Earth’s climate is  currently changing.  Although c limate change has occurred throughout earth’s 
history, the current rate of change, the fact that we are present to be impacted by it and the growing 
body of evidence indicating that we are responsible for it, all suggest that we should attempt to reduce 
its impacts wherever possible. Over the course of the last century, global average surface temperature 
has increased by around 0.6ºC, and precipitation has increased, particularly over mid- and high-
latitudes. These changes, in turn, have affected the extent of both global ice cover (decreasing) and 
sea-levels (increasing).  

The ongoing increase in temperature resulted from increased concentrations of carbon dioxide 
and other greenhouse gases in the atmosphere, which reduces radiative heat loss from earth. As a 
result of burning fossil fuels and other human activities, carbon dioxide concentrations have r isen by 
32% from about 280 ppm in pre- industrial t imes to about 370 ppm at present.  If this trend continues, 
carbon dioxide levels are expected to exceed 400 ppm by the year 2100, causing a mean global 
temperature r ise of 1-4 ºC in the coming century. Increased surface warming is likely to increase the 
frequency and intensity of climatic extremes, including tropical cyclones, flooding, and droughts. 

Sea-levels are forecast to rise at rates of 30-50 cm per century, flooding many fertile delta regions 
and low-lying is lands. Over much of the world, glacial areas will be restr icted to higher latitudes and 
altitudes, and animals and plants that depend upon them will be further restricted as well.  Pollen 
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records suggest that in most instances trees can shift their ranges by about 200-400 m annually (Davis 
1981, King & Hertrom 1997). Under the current rate of climate change, July isotherms are expected to 
advance northward at 4-5-Km annually. If trees were to track this rate of change they would need to 
migrate 10-25 times faster than the mean rate exhibited by the pollen record.  In this s ituation it is 
diff icult to predict the impacts of climate change on plants and animals.  

Another problem in predicting future biota distribution is that large parts of the landscape have 
now been converted to human use and, as such, are closed to most of the w ild animals and plants. In 
fact, many areas provide no broad-front dispersal route, but, at best, a series of narrow  interrupted 
corridors and stepping stones, thereby impeding or preventing the movements of many organisms. The 
ongoing situation is likely to favour plants with short response times, namely herbs, shrubs and fast-
growing trees, whereas slow-growing trees with long generation times and poor dispersal 
character istics could be particularly disadvantaged. Although animals are more mobile than plants, 
they also are restr icted to areas of suitable vegetation.  

 

Error! Objects cannot be created from editing fie ld codes. 

3. MIGRATORY BIRDS IN EUROPE 

The environmental conditions for life on our planet are characterized by the continuous inf luence 
of a geophysical cycle with annual periodicity. “Seasonal Earth” results from the planet’s rotation 
around the sun together with the degree of inclination of its axis of rotation, resulting in the four 
climatic seasons in most part of the world. The seasons bring with them constant changes in 
environmental conditions to which animals must adapt if the are to survive and reproduce. A common 
response to seasonal periodicity is migration. 

Diverse forms of seasonal migration have developed in response to the seasons. The simplest 
cases are vertical migrations in a geographically limited environment. In birds too, some of the 
simplest seasonal m igrations are vertical. Many alpine birds migrate down to the valleys to spend the 
winter. In European high mountains and subalpine regions this behaviour is exhibited by Alpine 
Choughs (Phyrrycorax graculus), the Water Pipits (Anthus spinoletta), and Wallcreepers (Tichodroma 
muraria) among others (Berthold 2006). 

Seasonal long-distance migrations can be found in many arthropods. Marine crustacea can 
migrate for several hundred kilometres on the bottom of the sea. The American Monarch butterfly 
(Danaus plexippus)  migrates up to 4000 Km from Canada to Mexico, and the Red Admiral (Vanessa 
atalanta) is believed to migrate from northern Afr ica over the Mediterranean into Scandinavia. 
Seasonal long-distance m igration is pronounced in all vertebrate classes, including fish, amphibians, 
reptiles and mammals. But no c lass exhibits the complexity and extent of the migration of birds 
(Berthold 2006).  

Birds are espec ially adapted to migration due to their capacity for active f light, their size, and 
their homoeothermy. Birds are present in virtually all parts of the Earth,  and their  migratory routes 
cover most of the Earth’s surface. In extreme cases migrants cover distances equivalent to the 
circumference of the planet. The number of bird species that migrates varies with latitude. In the 
northern hemisphere, less than 10% of tropical species undertake m igratory journeys, this proportion 
increases w ith distance from the equator, and more than 80% of all species above the Arctic Circle 
migrate. Climate induced changes in the habitat are predicted to be greatest in the Arctic, where the 
importance of migratory species is highest. In Europe, more than 60% of the roughly 400 breeding 
bird spec ies are partial migrants (species in which some individuals migrate, but others do not), and it 
is highly likely that the remainder, are also genotypical partial migrants ( i.e. potential partial migrants 
whose genome contains genes that can induce sedentary behaviour under certain conditions, Bertthold 
1999).  

Migratory birds are perhaps the best group of animals on which to monitor the effects of climate 
change. They are diurnal in habits, conspicuous and easy to identify, and are popular w ith many 
people, including scientists. In various parts of Europe, their distr ibutions and numbers have been well 
monitored for decades, as has the timing of their migrations and breeding seasons. Migratory birds are 
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perhaps more vulnerable than most species to climate change, because they can be influenced by 
conditions in their disjunct breeding grounds and wintering areas, as well at sites along their migration 
routes.  Research has shown that populations of some migratory birds are limited by conditions in 
winter ing areas, whereas those of others are limited by conditions in breeding areas, or at stopover 
sites along migration routes.  Individual birds also experience carry-over effects, in that conditions 
experienced in winter ing areas can inf luence subsequent breeding success; and conditions experienced 
on the breeding grounds can influence subsequent over-winter survival. 

 
Figure from Newton (2003) showing the cline of percent of migratory birds according 

latitude in Europe. 
There is no doubt that bird migration originated in the tropics, or at least in tropical-subtropical 

conditions. This is supported by the observation that most long-distance migrants of the northern 
hemisphere have closely related, non-migratory or partially  migratory forms in the tropics (Rappole 
1995). Migration under tropical conditions initially covered only short distances and from the 
beginning included partial migration. However partial migration may have evolved (Bildstein 2006), it 
has proved to be an extremely successful and adaptable life force, and has become increasingly 
widespread.  

Once partial migration was genetically anchored in a species, the movement ecology of 
populations w ithin it could range from entirely sedentary to completely migratory depending upon 
ecological circumstances, and within the latter, intercontinental, long-distance migration could evolve 
as conditions merited. Selection experiments involving captive song birds suggest that the 
transformation from migratory to sedentary population (or vice versa) in the w ild could occur within 
about 25 generations or 40 years (Berthold 1999). 

Recent ice ages certainly played a major role in the development of bird migration in and out of 
Europe. At the height of ice coverage in the Northern Hemisphere the avifauna of Europe was greatly 
reduced (Moreau 1954), only to increase during intervening warm periods. The current bird migration 
system in Europe, which emerged at the end of the last ice age, 15 000 years ago, is still developing 
(Berthold 2006). 

Migrant birds also are important vectors for different forms of life, including plants, fungi, algae, 
and many microorganisms. As a result, migratory birds can be a major factor in determining the 
distribution of other life forms. Populations of migrating birds can also serve as reservoirs for diseases 
and can spread disease-causing agents to humans, their livestock, and plant resources.  In an overview 
of the subject, Gerlach (1979) lists viruses, Rickettsia, Chlamydia, bacter ia, and fungi as disease 
vectors that can be spread by birds either through direct infection or through the ectoparasites carried 
by birds.  Cases of toxoplasmosis and Haemosporidia ( i.e. protozoans) have been reported (Aspöck & 
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Hermentin 1987, Valkjunas 1989). This widespread transport has been c losely studied. An 
examination of over 5,000 birds in Austria has revealed that many arboviruses are regular ly 
transported by migratory birds (Wojta & Aspöck 1982).  Transported infections include Q fever, 
typhus fever, pseudo-tuberculosis, Newcastle disease, salmonella, and, most recently, avian influenza 
H5 N1. As migration behaviour changes in European birds as a result of climate change, so will their 
role as transport agents of organisms that are important to humans. 

 

 
From Bildstein (2006) 
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4. IMPACT OF CLIMATE CHANGE IN MIGRATORY BIRDS 
Change in the migratory behaviour of wild birds has attracted attention recently, as interest has grown 

in assessing the effects of human-induced climate change.  If weather has become warmer, as it has over 
much of the world, one might expect birds to have responded accordingly, with migratory species over-
wintering at higher latitudes, or arriving earlier and departing later from their breeding grounds.  Ring-
recoveries, long-term observations of visible migration at migration watchsites, and regional records of 
first arrival and last departure in spring and autumn, respectively, all have played important roles in 
assessing the way that bird migration has changed and continues to change over time.  The following 
sections provide examples of these changes. 

4 .1 Change s in mig ratio n timing  

Studies of long-term trends in arrival times of birds are mostly based on dates of first sightings, as 
it is these dates that are most frequently recorded, in some European localit ies for periods exceeding 
300 years (Lehikoinen et al. 2004).  The problem with f irst arr ival dates is that many refer only to 
single individuals, which may not be representative of entire populations. Although median or mean 
arrival dates of populations of individuals in their breeding areas are more representative, they have 
been recorded less frequently, and chiefly in recent decades.  Another source of migration timing are 
Bird Observator ies where observations of vis ible migrants or trapping dates of other migrants are 
maintained throughout the migration seasons each year, enabling median or mean passage dates (and 
standard deviations) to be calculated. One approach in us ing these data has been to combine records 
from different Bird Observator ies in the same region and calculate regional values.  

Whereas arr ival (or departure) dates refer to birds from a single population breeding in a 
particular area, passage dates usually refer to birds from more than one breeding area, occupying a 
wide span of latitude, counted at a point on their migration. Some studies have compared first and 
median or mean passage dates from the same site over a period of years, and found the various dates to 
be correlated (Sparks et al. 2005, Hüppop & Hüppop 2003, Jenni & Kéry 2003, Vähätalo et al. 2004). 
In years that were early, the total arrival period was prolonged. Despite methodological differences, 
long-term studies of migration timing tend to support each other’s findings. 

SPRING DATES 

Presumably as a result of long-term climate warming, many birds now arrive in their breeding 
areas earlier in spring and depart later in autumn than in the past, spending from a few days to a few 
weeks longer each year in their summer quarters. Such changes have become apparent in a w ide range 
of species at many localit ies in both Euras ia and North America (Moritz 1993, Loxton & Sparks 1999, 
Vogel & Moritz 1995, Sparks 1999, Sparks & Mason 2001, Fiedler 2001, Inouye et al. 2000, Jenkins 
& Watson 2000, Sokolov 2001, 2006, Sokolov et al. 2000, Bair lein & Winkel 2001, Zalakevicius & 
Zalakevicuite 2001, Hüppop & Hüppop 2002, Tryjanowski et al. 2002, Bradley et al. 1999, Root et al. 
2003, Lehikoinen et al. 2004, Vähätalo et al. 2004, Mills  2005, Stervander et al. 2005). Nevertheless, 
not all spec ies exhibit such changes. Exceptions may be the result of missing data or population 
declines that make it more diff icult to detect the earliest arr ivals and latest departures, as well as 
inf lexibility in migration scheduling, or constancy in limiting factors in spite of climate change. 

Of 983 Eurasian bird populations in which f irst arrival dates on the breeding grounds were 
monitored over time, 59% showing no s ignificant change, 39% arrived significantly earlier, and only 
2% arrived signif icantly later (Lehikoinen et al. 2004). Both short-distance and long-distance migrants 
showed the same trends. From 222 populations for which mean passage dates could be calculated of 
time, 69% showed no change, 26% were signif icantly earlier, and only 5% were signif icantly later. 
The average change of f irst arrival date over all species and sites was -0.373 days per year, while the 
equivalent f igure for mean passage dates was -0.100 days per year.  Both figures were statistically 
signif icant.  It is not obvious why the two figures differed, but in general the mean migration dates 
were based on larger, more standardised data-sets. 

Within the long term trends, arrival and migration dates fluctuated annually in line with local 
temperature. For example, at the Rybachy Bird Observatory on the Courish Spit in the southeastern 
Baltic, warming during the 1930s and 1940s, and then in the 1960s and 1980s, was associated with 
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significantly earlier spring migration in many species of song birds, whereas colder periods during the 
1950s and 1970s were associated with later passage (Sokolov et al. 1998).  

Most researchers have used annual temperatures from localit ies on the migration route or 
breeding area, whereas others have used the winter-spring index of the North Atlantic Oscillation 
(NAO), a large-scale climate phenomenon influencing weather in this region (eg Vahatalo et al. 2004, 
Stervander et al. 2005, Sokolov 2006, Zalekevicius et al. 2006), that is calculated as the difference in 
normalised monthly values of atmospheric pressure in the Azores and Iceland. Positive values indicate 
warmer and wetter winter-spring weather (and by earlier spring migration) in northwest Europe and 
the opposite weather conditions and later arr ival dates than usual in southern Europe.  Typically, most 
birds arr ived about 2.5-3.3 days earlier for every 1°C increase in spring temperature (based on 203 
regression analyses for different Euras ian bird populations, Lehikoinen et al. 2004).  A smaller 
number of studies available from North America revealed similar trends (Bradley et al. 1999, Inouye 
et al. 2000, Butler 2003, Mills 2005, Murphy-Klaassen et al. 2005), although in eastern North 
America, long-term temperature change has been less marked than in Western Europe. In general, 
earlier arrival of migrants in spring leads to earlier breeding, as described as a recent trend in a range 
of species (Crick et al. 1992, Sokolov 2006).  Earlier breeding, in turn, often gives r ise to higher 
reproductive success (Thingstand 1997, Sokolov 1999, 2002, Bair lein & Winkel 2001). 

Despite strong correlations between arr ival dates and temperature on the breeding grounds, much 
of the variance in arrival dates remains unaccounted for. Migration timing may also be influenced by 
weather along the migration route or in wintering areas (Sokolov 2006), as well as by changes in 
weather including wind and barometric pressure, and by different factors such as food-supply. 
Moreover, poor weather at one part of a migration route can stall migratory movements there, even 
though conditions may be favourable further along the route. Inter-spec ies differences, which have 
been demonstrated in every relevant study, could be diet-related, and further investigation is needed.  

In comparing the changes that have occurred in the spring migration dates of different species, 
several general patterns emerge:  

• Greater changes have occurred in the migration dates of early-migrating species than of later-
migrating species. This is associated w ith weather (including temperature) being more variable earlier 
than later in the spring (for passage dates see Sokolov et al. 1998, for arrival dates at breeding s ites 
see Slagsvold 1976, Loxton & Sparks 1999). 

• Greater changes have occurred in the arrival dates of short-distance than long-distance migrants – 
presumably because short-distance migrants generally arr ive earlier in spring (same point as above), 
and have more flexibility in their migration timings (Tryjanowski et al. 2002, Butler 2003). 

• Greater changes have occurred in the arrival dates of smaller bird than larger birds. This is possibly 
because the smaller species are more sensitive to annual temperature differences and their effects on 
food-supplies (although their shorter generation times would also favour more rapid genetic change 
than is not possible in large longer- lived species). 

• Inter-annual variability in the arrival dates of short distance migrants generally showed a correlation 
w ith spring temperatures in the breeding locality, but such correlations were less obvious in long-
distance migrants (Tryjanowski et al. 2002). Moreover, where it has been investigated, weather along 
the migration corridor often shows a better relationship with arrival dates than does weather at the 
arrival location (e.g. arrival dates of Barn Swallows Hirundo rustica in Britain were better related to 
weather in France-Spain than to weather in Britain, Huin & Sparks 1998).  

• Spring weather has not changed everywhere in the same way.  Correspondingly, the degree of change 
in arrival dates in breeding areas varies across Europe, with arrival dates in most areas getting earlier 
as spring temperatures increase, but later in those areas w ith decreasing spring temperatures.  In the 
Mediterranean region, springs are now cooler than in the past, which may slowing the return of long-
distance migrants from tropical Africa to the mid- and higher latitudes of Europe.   

• Most species still arrive on their breeding grounds earlier in warm springs than in cool springs.  
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Three explanations may account for the fact that more short-distance migrants than long-distance 
migrants now arrive earlier in spring and in closer correlation to temperatures on breeding areas.  First, 
a stronger endogenous control of migration in long-distance migrants might inhibit a rapid reaction to 
a changing environment (Gwinner 1986, Berthold 1996).  Short-distance migrants are typically more 
flexible (facultative) in their response, and more able to alter their behaviour in relation to prevailing 
conditions.  Secondly, the c loser a species w inters to its breeding areas, the more c losely correlated are 
the day-to-day weather changes in the two areas, enabling short-distance migrants to react more 
rapidly and appropriately. Thirdly, weather is more variable early in the spring, when most short-
distance migrants arrive in their breeding areas, than it is  later in the spring, when most long-distance 
migrants arrive.  

In most species, males arr ive in breeding areas before females, and studies of first arr ival dates 
typically concern only males. But the two sexes may not necessarily respond in the same way to 
climate change. A long-term study of arr ival dates of male and female Barn Swallows Hirundo rustica 
in Denmark revealed that only males responded to c limate amelioration during migration (Møller 
2004). Therefore, even though males arrived earlier there was change in mean nesting date, because 
females arr ived no earlier than they did 30 years previous ly. 

Earlier arr ival on the breeding grounds could be brought about by (a) increases in the speed of 
spring migration, (b) earlier departure from wintering areas, (c) over-winter ing closer to the breeding 
grounds, or (d) combinations of these possibilit ies. More rapid progress in warm than cold springs has 
been recorded in many migrants from the dates they pass through successive observation s ites in 
different years. Only facultative responses could account for the year-to-year variation in arrival dates 
seen in many migrants, but this need not exc lude the possibility of genetic change in response to 
longer-term environmental trends, such as climate warming. Moreover, a long-distance migrant, the 
Garden Warbler (Sylvia borin), and a short-distant migrant, the Blackcap (Sylvia atricapilla) bred in 
captivity, showed no difference in heritability of migration dates (Pulido 2005).  

AUTUMN DATES. 

Overall, changes in autumn migration dates over recent decades have been fewer and more 
variable, than changes in spring dates (Gatter 1992, 2000, Bair lein & Winkel 2001, Sparks & Mason 
2001, Jenni & Kéri 2003, Fiedler 2001, Lehikoinen et al. 2004, Sokolov 2006; but see Mills 2005). 
Two patterns have emerged, involving either earlier or later departure over the years.  In some single-
brooded populations, earlier arr ival is followed by earlier breeding and moult, and, subsequently, 
earlier departure. In such populations, the timing of successive events through the summer, from 
arrival, egg-laying, hatching, f ledging, moult and autumn migration, are correlated with spring 
temperatures, and show litt le or no relationship with the prevailing autumn temperature. An earlier 
spring arrival pulls the whole cyc le forward to give an earlier autumn departure (Ellegren 1990, 
Sokolov et al. 1998, Sokolov 2000, 2001, Bojarinova 2002). At Rybachi on the southern Baltic coast, 
warming in the 1960s and 1980s led to significantly earlier mean dates in spring passage, breeding and 
autumn passage. Conversely, colder springs during the 1970s caused a shift towards later spring 
passage, breeding and autumn migration (Sokolov et al. 1999). These changes occurred in both short-
distance and long-distance migrants.  Most migrants at Rybachy came from northern breeding areas 
that provided time for only one brood.   

Similar relationships were found for s ingle-brooded long-distance migrants passing through the 
Swiss Alps in autumn (Jenni & Kéri 2003). The long-distance m igrants may have benefited from an 
earlier crossing of the Sahara before its seasonal dry period.  In contrast, shorter distance migrants 
passing over the Alps and w inter ing north of the Sahara mostly showed a later autumn passage. These 
are mostly passerine species that can raise more than one brood per year, so could better take 
advantage of a longer season by remaining longer in their breeding areas. Further south and west in 
Europe, where individuals  can make up to two or three breeding attempts in the same season, 
departure dates of passerines have tended to get later as local temperatures have r isen (Marchant 
2002), but it is not known whether this has been associated w ith a lengthening of the breeding season.  
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4 .2 C hanges  in the le ngth of migration route s  

SHORTENING OF MIGRATION ROUTES 

So called migration “short-stopping” has occurred in many species as more food has become 
available at higher latitudes in the w inter ing range, either through human activities or c limate change.  
Several North American populations of Canada Geese (Branta Canadensis) have responded in this 
way to agricultural changes or to the creation of waterfowl refuges where food is provided (e.g. 
Terborgh 1989, Hestbeck et al. 1991), as have Greylag Geese (Anser anser) and Common Cranes 
(Grus grus) in Europe (Rutschke 1990, Alonso et al. 1991).  Other spec ies of waterfow l have 
shortened their migrations, apparently in response to warmer winters, as open water has become 
available nearer the breeding areas. This is manifest by increased numbers wintering in northern and 
eastern parts of Europe, and declining numbers of the same spec ies w inter ing in the south and west. 
Other spec ies of waterfowl have shortened their migrations in apparent response to reduced 
disturbance and predation, as sanctuaries have been established in areas previously open to hunting. 

Examples of migratory short-stopping in raptors include Sharp-shinned Hawks (Accipiter striatus) 
and Merlins (Falco columbarius) in parts of North America (Bildstein 2006).  For both species an 
increased dependence upon bird-feeder birds and suburban birds seems to be responsible for the 
change in migration behaviour.  

Shortened migrations are also ref lected in the changing distr ibutions of r ing recoveries of many 
other species. Similar ly, among 30 species of short-distance or partial migrants breeding in Germany, 
a tendency towards w inter ing at higher latitudes was found in ten species, and at lower latitudes in 
three species, although r inging recoveries are affected by changes in human land use and hunting, as 
well as in climate (Fiedler et al. 2004). More and more European m igrants that formerly wintered 
entirely in tropical and southern Afr ica are now over-w inter ing in small but increasing numbers in the 
Mediterranean. Examples include the Yellow  Wagtail (Motacilla flava), House Martin (Delichon 
urbica), Osprey (Pandion haliaetus), Lesser Kestrel (Falco naumanni), and White Stork (Ciconia 
ciconia) (Berthold 2001). 

In some regions irruptive migrations have become less frequent than formerly, presumably 
because the birds have become less numerous or, more often, remain in their breeding areas year-
round. Comparing the nineteenth with the twentieth centur ies, the P ine Grosbeak (Pinicola 
enucleator) has become a much less frequent vis itor to the middle latitudes of Europe. No noticeable 
invasions of Scandinavian Great Tits (Parus major) and Blue Tits (Parus caeruleus) to Britain have 
occurred since 1977 and no big invasions of Great Spotted Woodpeckers (Dendrocopos major) since 
1974.  In Germany, invasions of Blue Tits, Waxw ings (Bombicilla garrulous) and Redpolls (Carduelis 
flammea) have also become less frequent (Fiedler 2003). On the other hand, Two-barred Crossbills 
(Loxia leucoptera) have appeared in Fennoscandia in increas ing numbers and frequency, poss ibly 
associated with the increased planting of larch (Larix spp.) outside their natural range. Likew ise, in 
eastern North America, Evening Grosbeaks (Hesperiphona vespertina) have become less numerous, 
and their invas ions less frequent, than previously. This may be associated with reduced outbreaks of 
Spruce Budworm (Choristoneura fumiferana), a favoured summer food, and with increased winter 
bird feeding by householders. 

Other types of change have also occurred. For example, like many other birds that does not start 
to breed until they are two or more years old, young White Storks (Ciconia ciconia) remain in “winter 
quarters” through their first summer, or migrate only part way towards breeding areas. In recent 
decades, second-summer birds, whose predecessors used to remain in Afr ica, have returned in 
increasing numbers to southern Europe to pass the summer. The mean distance of recoveries of 
second-summer birds from their natal sites in north Germany was 2,517 km in 1923-75 (N = 120), 
reducing to 720 km in 1978-96 (Fiedler 2001). 

LENGTHENING OF MIGRATION ROUTES   

In spec ies that have expanded their breeding areas to higher latitudes yet have retained the same 
winter ing areas, extens ion of migration routes has occurred.  Northern hemisphere examples include: 
(1) Black-w inged Stilt (Himantopus himantopus) which is expanding its breeding range northward 
(France, Ukraine, Russia) but still winters south of 40°N latitude; (2) European Bee-eater (Merops 
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apiaster) which has expanded northwards in almost all central European countr ies, yet still winters 
entirely in Afr ica south of the Sahara; (3) Citr ine Wagtail (Motacilla citreola) which is expanding its 
breeding range from Asia westward into Europe, but still winters in India and southeast Asia (Fieldler 
2003). The intra-European routes have increased by up to 1,000 km.  These examples represent the 
kind of changes that must have occurred in many spec ies after each glaciation, when ice receded, and 
plants and animals spread from lower to higher latitudes.  

Most Red-breasted Goose (Branta ruficollis) now over-w inter in Romania-Bulgaria, some 300-
600 km further from their breeding areas than in the 1950s, as former wintering s ites in Azerbaijan 
have been altered by land-use changes (Sutherland & Crockford 1993).  In even earlier times, the 
species was found in winter even further from its breeding areas, being depicted in the art of anc ient 
Egypt (Houlihan 1986).  Thus over recorded history this species has both shortened and lengthened its 
migration routes. Such changes in the length of migrations could initially involve only facultative 
responses to local conditions, but as migrations lengthen over time, some genetic change seems likely, 
as they would require changes to regulatory mechanisms. 

In some other species, greater proportions of ring recoveries are now being obtained from the 
distant  parts of migration routes than formerly, but it is hard to tell whether this is due to altered 
migration behaviour, or to increased opportunities for recoveries along the routes (Fiedler et al. 2004). 
In particular, over recent decades hunting has dec lined much more in the northern and mid latitudes of 
Europe than further south. This could affect the migratory behaviour of hunted species, or the 
distribution of their ring recoveries. 

4 .3 Changes in migratory h abits   

MIGRATORY TO S EDENT ARY 

At many latitudes many populations of birds have become more sedentary recently. For example, 
prior to 1940, the Lesser Black-backed Gull (Larus fuscus) was almost entirely migratory in Britain, 
with only a few individuals remaining year-round. Today, large numbers of all age-groups stay for the 
winter, feeding mainly on refuse dumps which have increased the winter food-supply (Hickling 1984). 
A s imilar change has occurred among Herr ing Gulls Larus argentatus in Denmark (Petersen 1984). 
Another example is the Euras ian Blackbird Turdus merula, in which the British and mid European 
populations have become progressively more sedentary during the last two centuries, as winters have 
mellowed (Berthold 1990, Main 2000).  In both Europe and North America, many seed-eaters are now 
winter ing further north in their breeding range, in association with the provis ion of suitable food at 
garden feeders.  Winter feeding turned a Great Tit Parus major population from migratory to 
sedentary in the Finnish city of Oulo near the Arctic Circle (Orell & Ojanen 1979).  Among many 
other short-distance and medium-distance migrants, increas ing numbers of individuals now winter in 
areas where they once were wholly migratory, these species developing into typical partial migrants.  
Some such changes could be genetic in nature, others facultative. Their net effect is to expand the 
winter avifauna of many high-latitude areas. 

SEDENTARY TO MIGRATORY 

Examples of changes from sedentary to migratory behaviour are less evident, and are generally 
associated with an extens ion of breeding range into higher latitudes. For example, the European Serin 
(Serinus serinus) was once restricted to the south of Europe where it is sedentary, but in the early 20th 
century it spread north, where it became migratory.  In more recent years, with milder winters, this 
migratory population has become partially resident (Berthold 1999).  Likewise, since the 19th century, 
many bird species have spread north in Fenno-Scandia, including the Northern Lapwing (Vanellus 
vanellus), Starling (Sturnus vulgaris), Eurasian Blackbird (Turdus merula) and Dunnock (Prunella 
modularis).  In new ly colonised breeding areas they are essentially migratory, whereas further south 
they are partial migrants or sedentary (Schüz et al. 1971).   

CHANGES IN MIGRATORY DIRECTIONS 

A well known example of recent change in migratory direction involves the Blackcap (Sylvia 
atricapilla), a species that is now w inter ing in increas ing numbers in the British Islands. Changes in 
the direction of migration, leading to the adoption of new winter ing areas, also were recorded in 
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several species in the last century. For example, Little Egrets (Egretta garzetta) breeding in southern 
France migrated southward, some crossing the Sahara to winter in the Afrotropics.  Beginning in the 
1970s, increas ing numbers began to migrate northwest to w inter in northern France, southern Britain 
and Ireland (Marion et al. 2000).  Some later became res ident in these areas, and from the 1990s 
started to breed there.  Similar ly, Lesser Black-backed Gulls (Larus fuscus) from Europe have begun 
increasingly to winter on the coasts of eastern North America, w ith records from Nova Scotia to 
Flor ida, a change which requires a much stronger westerly component in the directional preferences. 
Almost certainly, such marked directional changes have involved genetic changes, as conf irmed for 
the Blackcap by breeding and direction-testing in captivity. 

A different type of change is shown by those northern hemisphere species introduced to the 
southern hemisphere, which have reversed the direction of their spr ing and autumn journeys, 
respectively, so that they continue to winter in lower rather than in higher latitudes.  This is true, for 
example, for the European Goldf inch (Carduelis carduelis) and others introduced from Europe to New 
Zealand in the 19th century, and also for the White Stork (Ciconia ciconia) which colonised South 
Africa naturally in the 1930s, and now migrates north to over-w inter in Zaire and Rwanda (Harr ison et 
al. 1997). 

4 .4 Discuss ion  

Most of the work cited in this report focuses on particular species or suites of similar species, and 
it is diff icult to determine what proportion of an avifauna’s migration habits, other than arrival times, 
have changed in recent decades. Over the past 50 years, climate changes have been more marked in 
some regions than in others, and studies reporting changes in migratory behaviour were more likely to 
be published than those f inding no change. However, among the bird species that breed in Britain, 73 
provided enough ring recoveries from a suff iciently long period to look for changes in the lengths and 
directions of migratory movements. Of these, 51 (70%) of these species showed no s ignif icant change 
in either respect during the 20th Century, in 15 species movements  became shorter, in five species 
they had become longer, and in two species movements changed in complex ways. The 22 spec ies that 
evidenced change were significantly more than the four expected on a signif icance level of 5%. These 
species included song birds, raptors, waders, waterfowl, and seabirds (G. Siriwardena & C. Wernham, 
in Wernham et al. 2002). Sim ilarly, of 30 species that breed in Germany,  and provide enough ring 
recoveries, eight species showed decreasing mean recovery distances with time, whereas five species 
showed increasing mean recovery distances (Fiedler et al 2004). Again the numbers that showed 
change were s ignif icantly greater than the two expected at a signif icance level of 5%. Such studies 
confirm that changes in the migration behaviour of birds have been common over the last several 
decades. 

These observations, together with selection experiments on captive birds, serve to confirm that 
migration is a dynamic phenomenon, subject to continual change in response to prevailing conditions.  
Some aspects, such as an abrupt change in the direction of migration, imply rapid evolutionary shifts, 
whereas may represent either genetic or facultative responses to changing conditions.  Overall, it 
seems reasonable to assume that both genetic and facultative responses are likely to be involved, with 
birds responding initially by facultative means, and, eventually, genetically, as natural selection comes 
into play. Facultative responses are relatively limited (though variable in extent between species), and 
if environmental conditions continue to change in the same direction, such responses eventually 
become inadequate to deal with the new conditions. Only genetic change may enable the population to 
respond appropriately to conditions beyond the previous range.  

Although all major aspects of migratory behaviour have been shown to have heritable components, 
mainly through artificial selection and cross-breeding in captivity, genetic change is not easily 
demonstrated in wild populations. The assumption is that, if individuals taken from the wild in different 
years or from different regions express behavioural differences when held under identical controlled 
conditions, these differences are likely to have a genetic basis. This conclusion is strengthened if the trend 
is maintained in captive-bred offspring from these individuals, unaffected by parental effects or 
experience in the wild. Such a test has been made with Blackcaps (Sylvia atricapilla) randomly collected 
as nestlings from south Germany and hand-raised each year over a 13- year period (Berthold 1998, 
Berthold & Pulido 2003). In successive samples of birds, the amount of autumn migratory activity was 
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found to decline, towards a later onset and reduced intensity (less activity per night). This was precisely 
the result expected if the population had responded genetically to ameliorating environmental conditions, 
so at least in this species later departure and shorter migration may partly represent a genetic response 
resulting from natural selection.   

Occasionally, a wild population under study has unexpectedly provided evidence for genetic change 
in some aspect of migration, as in the effect of unusually severe weather on the arrival and departure dates 
of the swallows. Indications of genetic change in other aspects of migratory behaviour also can be gained 
from long-term studies of wild bird populations, but these studies are not without problems, and findings 
can often be interpreted in different ways. Moreover, apart from arrival dates, reliable information on 
migratory traits is hard to collect from free-living birds (Pulido & Berthold 2004).  

In any population the rate of evolutionary change is limited by: (1) the amount of genetic variation 
within the population at the time; (2) the strength and consistency of the selection pressure; and (3) the 
extent to which selection on one trait causes parallel changes in others, which could be beneficial or 
detrimental. Genetic variance is often reduced in populations that have suffered recent numerical declines 
in which much of the variance was lost (genetic bottlenecks). Such variance can be increased again by 
immigration and gene flow from another population, or in the longer term by mutation and other means. 
Immigration can also have deleterious effects if it breaks up locally-adapted gene complexes, and makes 
the local population less well adapted to local conditions.  

Single selection events, such as spring storms, can cause rapid genetic change in the arrival dates of 
populations, but reversed selection pressures could rapidly reverse the situation, and change arrival dates 
back to their original state.  Selection pressures must act consistently in the same direction over several 
generations if they are to have any more than temporary effects on the genetic composition of a 
population. Most selection probably acts to stabilise the gene pools of populations rather than to change 
them. Moreover, most migratory traits (notably incidence, intensity and timing) are part of a syndrome of 
co-adapted traits (Pulido & Berthold 2003), so selection on one trait is likely to have strong simultaneous 
effects on the others. If this is disadvantageous in the new conditions, it may take many generations of 
selection to dissociate the beneficial traits from the detrimental ones before evolutionary change can 
occur. Evolutionary change may thus be rapid or slow, depending on the circumstances.  

An important aspect of global warming is that temperatures have increased more in some regions 
than others, and more at some times of year than others. The timing of spring migration could be 
inf luenced by weather conditions along the whole migration route, whereas the timing of egg-laying 
depends of conditions on breeding areas. Any discrepancy between conditions en route and in 
breeding area can worsen the mismatch between breeding and food supply.  Moreover, in the breeding 
areas themselves, birds may respond more or less rapidly than their food organisms to climatic 
changes, so that birds cease to arr ive and breed at the optimal time. An apparent example is  provided 
by Pied Flycatchers (Ficedula hypoleuca) breeding in the Netherlands, where climate change has 
advanced the food supply on which breeding depends, but spring migration has not advanced 
sufficiently to allow the birds to make best use of this food supply, as they did in the past (Both & 
Visser 2001). The birds thereby suffered reduced breeding success, and in areas with the biggest 
“ecological mismatch,” population levels declined by about 90% over a 20-year period (Both et al. 
2006). Such mismatches can only be rectif ied in the long term by changes in the genetic controlling 
mechanism, so that migration is triggered at an earlier date with respect to prevailing conditions. The 
longer the migratory journey, the less likely is weather in the breeding and winter ing areas to be 
correlated. Long-distance migrants would have litt le if any indication on their w inter ing areas 
regarding how spring is developing on the breeding ground. Their departure dates from wintering 
areas are triggered by a photo-periodically timed endogenous rhythm, evolved through natural 
selection, which ensures that they arrive on breeding areas at an appropriate date (with minor variation 
according to prevailing conditions). Only by evolution acting on this endogenous control mechanism 
is the trigger date for departure likely to be changed. In this situation, the selection pressure to migrate 
earlier is applied in the breeding area, but the action to accomplish an earlier arr ival occurs weeks 
before in the winter ing area, hundreds or thousands of kilometres away (Visser et al. 2004). Changing 
this  control mechanism may be a relatively slow process, perhaps explaining why the arrival dates of 
long-distance migrants are less well correlated with temperatures on breeding areas than are the arr ival 
dates of short-distance migrants, wintering nearer to breeding areas. Another mismatch was found in 
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the American Robins (Turdus migratorius) that breed at high elevations in the Rocky Mountains of 
Colorado and whose spring arrival dates advanced by two weeks over a 20-year period. At the same 
time, winter snow-fall increased and took longer to melt, producing a mismatch between arr ival dates 
and the exposure of bare ground feeding areas (Inouye et al. 2000). 

These examples raise the general point that the photoperiodic responses of many birds, through 
which their annual cycles are often timed, may become less reliable predictors of seasonal change in 
food supplies, as c limate change alters the phenology of their food supplies. This is not a new 
problem, as it is faced by all birds as they expand their breeding ranges into different regions, but it 
will take time for them to adjust genetically to new situations, during which time they could perform 
less well than usual (though not necessarily with effects on population levels).  

5. RECENT CHANGES IN THE DISTRIBUTION OF BIRDS 
During the last 150 years, the annual average temperature in many places of the northern 

hemisphere increased by as much as a few degrees centigrade, and the May-June isotherms moved up 
to several hundred kilometres northwards and up to several hundred metres up mountainsides. Over 
the same period many mid-latitude birds spec ies increased and spread northwards, while other more 
northern spec ies declined and retreated yet further north. Such range changes usually have been 
attr ibuted to c limate change (Burton 1995), but often without considering the poss ible effects of other 
potential causes as human impacts on habitat, changes in the public perception of birds, change in 
food-supplies or available nest s ites, etc. Hence, some of the changes may well have been due to a 
combination of climate change and other factors. Almost always, uncertainty hangs over any 
explanation based on correlative analyses (Newton 2003).  

That said climatic change as an explanation of changes in ranges of birds is based on two things.  
First that many of the changes are latitudinal ( i.e., towards the north in the northern hemisphere), and 
second that for many species of birds reproductive and survival rates are clearly influenced by weather 
(Newton 1998). Hence, resident birds that suffer high mortality in hard winters, for example, might be 
expected to increase and spread further north during a run of mild winters. Some might then compete with 
more northern species, causing them to retreat even further north.  

During the twentieth century, major northward expansions in Europe occurred in the Grey heron 
(Ardea cinerea), Lapwing (Vanellus vanellus), Common Starling (Sturnus vulgaris), Wood-pigeon 
(Columba palumbus), Rook (Corvus furgileus) and Tawny Owl (Strix aluco). In some pairs of closely 
related species, as the southern form pushed northwards, its northern counterpart retreated.  This occurred 
in both the Chaffinch (Fringilla coelebs) and the Brambling (F. montifringilla). In total, 39 species of 
European landbirds have clearly expanded their ranges toward north during the 2oth Century (Newton 
2003).  

6. CONSEQUENCES OF THESE CHANGES 

Generally, warmer climates would lead to an increase in the number of residents populations in 
Europe, f irst as already sedentary populations in crease, second as obligate and facultative partial 
migrants become more sedentary, and third, to a limited extent, as some populations of complete 
migrants also become sedentary. At the same time, long-distance migrants would shorten their 
migratory movements.  As a consequence of such changes the phenomenon of migration, itself, would 
be at r isk. Specif ic predictions inc lude: 

• Greater survivorship among resident populations in high-latitude areas. 

• Increased competition between long-distance migrants and res idents on the breeding grounds. 

• Increasing r isk of ecological m ismatches between migratory birds and their  food-supplies more 
probable among long-distance migrants.  

• Changes to migratory directions and the choice of new, closer w inter quarters. 

• A reduction in the migratory distance to the winter quarters, 

• Increasingly delayed departure times. 
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• Earlier return times. 

• A substantial shift away from migratory behavior, particular ly long-distance migration, inc luding 
a reduction in large-scale movements along well-established thermal corridors. 

Error! Objects cannot be created from editing field codes. 

7. OTHER RELATED IMPACTS 
Migratory birds are sometimes killed in large numbers by storms encountered when they are 

migrating. Climatologists predict that, in many regions, storms and other extreme events are likely to 
increase in severity and frequency in the future. We can expect, therefore, that migrants w ill suffer 
greater weather- induced losses, which could cause noticeable reductions in their populations, 
regardless of other changes. 

Climate change is not the only potential r isk for migratory birds. Several well-described impacts 
of habitat manipulations and infrastructures are now negatively affecting populations of birds and their 
impacts may be additive to those of c limate change. Included among them are power lines and wind 
farms that offer potential and real hazards for several migratory birds. 

Collision with power lines is considered to be an important death cause for some bird species 
(Crivelli et al. 1988, Fiedler & Wissner 1980, Morkill & Anderson 1991). For most species involved in 
collisions, however, death rates at the population level are low (Brown 1993, Hugie et al. 1993). Most 
publications about collision of birds w ith electric w ires focus on transmission lines (from 220 kV to 
higher tension) and, specifically on ground w ire (static wire) collis ions (Beaulaurier 1981, Faanes 1987, 
Heijnis 1980). 

Non-conducting static wires are usually installed in transmission lines above the conductor wires to 
intercept lightning strikes and prevent power outages. They are generally smaller in diameter than the 
conductor w ires. Consequently, according to some authors, birds often see and avoid the conductor w ires 
only to strike the less visible static wire. Ground wires are believed to cause most of the collisions (Faanes 
1987), and many different  methods have been used in attempts to diminish mortality by such collisions 
including  marking ground w ires (Alonso et al. 1994, Beaulaurier 1981, Faanes 1987, Heijnis 1980, Miller 
1993, Morkill & Anderson 1991). The attention given on ground wire marking has created the general 
idea that only transmission lines are important obstacles for birds, and not the much more abundant 
distribution lines (usually without ground wires), with a tension lower than 220 kV. Varying success is 
obtained with ground wire marking, but over the years various solutions have been published and one 
might expect that nature managers have access to those solutions.  

Another type of accidents involving power lines is electrocution when the bird make contact with 
the wire while perching on conductive pylon. Electrocution from electric power lines carrying a 
current of between 16 and 45 Kv was described as the major risk factor for several populations of 
raptors (Ferrer & de la R iva 1987, Negro 1987, Ferrer et al. 1991, Ferrer 2001) including the 
endangered Spanish Imperial Eeagle (Aquila adalberti) during the 1980s and 1990s (Ferrer 2001), 
accounting for 46% of all adult deaths and 40% of all immature deaths in this spec ies.  

In Spain, regulatory and technical solutions largely solved this problem in the 1990s (Ferrer & 
Janss 1999), and today a significant reduction in deaths due to powerline collis ions is evident ( i.e., 
>84% reduction in collis ions involving Spanish Imperial Eagles, Ferrer & Penteriani 2007). 
Regretfully, not all the members of Council of Europe have adopted similar regulations regarding new 
powerlines and retrofitting particular ly dangerous existing lines. 

Some measures taken to reduce c limate change, including the development of w ind farms, could, 
themselves, severely impact migratory birds. Despite the obvious benefit of w ind turbines as a clean 
energy source, it is known that wind farms can potentially have adverse effects on birds, notably 
fatality through collis ion with rotating turbine rotor blades (e.g. Langston and Pullan 2003). This is 
particular ly so if wind farms are improperly sited along major migration routes, where large numbers 
of migrants could then be destroyed via collis ions with the rotor blades. The use of w ind as a 
renewable energy source has been increasing in many countries. At the current level of development, 
wind turbines have been estimated to comprise less than 0.01% of the total annual avian mortality 
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from human-caused sources in the USA (Erickson, 2002). Although such analyses do not 
acknowledge that some bird species may potentially be affected more by wind turbines than other 
anthropogenic mortality sources, at least one study has concluded that w ind turbines, when properly 
sited, can have minimal impact in comparison with other factors (Fielding et al. 2006). Nevertheless, 
the potential for wind farms to cause problems for bird populations should not be underestimated 
(Hunt 2002), so the coexistence of birds and w ind farms would be enhanced by a more detailed 
approach to this conservation issue and a greater understanding of the factors involved in influencing 
collision fatality (Barr ios and Rodríguez 2004, De Lucas, Janss & Ferrer 2007). Fortunately, we now 
have more scientif ic information about factors affecting bird mortality in wind farms as well as 
predictive methods to avoid dangerous locations for these wind turbines (De Lucas 2007). Again a 
European directive would be welcome. 

8. LONG-DISTANCE MIGRATION AND BIRD BIODIVERSITY  

The long-distance movements of birds may have important implications in avian speciation and, 
in turn avian divers ity. As we stated above, one of the likely responses to global climate change in 
birds is a substantial shift away from migratory behavior, particular ly long-distance migration, 
inc luding a reduction in large-scale movements along well-established thermal corridors. 

This then begs the question: What might be the consequences of the loss of long-distance, trans-
equatorial bird migration? One of the unintended consequences of millions of birds flying long 
distances into, out of, and within the tropics each year is that a small but signif icant portion of the 
migrants get lost. Approximately half of all migrants in autumn are juveniles, and this inexperienced 
age class is particular ly likely to become disoriented or w ind drifted during migration.  This results in 
the phenomenon of avian vagrancy.  “Vagrants” are members of a species that appear from time to 
time in geographic areas where they do not regularly breed, over-winter, or migrate through. Although 
relatively uncommon, vagrancy is an inevitable consequence of long-distance migration. The extent to 
which vagrancy occurs is evidenced by the fact that more than one third of all bird species on the 
northern California bird list are vagrants, as are more than 50% of those on the British bird list.  

Vagrancy, in turn, can result, in “migration dos ing,” in which flocks of migrants s imultaneously 
arrive at sites tangential or beyond traditional w inter ing areas, and consequentially fail to return to 
their intended destinations the next spring.  Although most of these vagrants die before breeding, in 
some instances they eventually breed in the new location and, over time, either by random genetic 
drift, natural selection, or both, eventually diverge from their parental stock and develop into a new 
species. 

An extreme case of migration dos ing can be found in the South Pacif ic accipiters, a species group 
of bird-eating raptors that is believed to have first evolved in Asia.  One particular ly migratory 
representative of this genus is the exceptionally long- and pointed-winged Chinese goshawk (Accipiter 
soloensis), which each autumn travels along the East-As ian Oceanic Flyway from breeding areas in 
eastern Asia to the South Pacif ic islands of the Philippines and Indonesia. In El Nino years, “migration 
overshoots” by this species create opportunities for migration dosing east of Wallace’s Line in 
Wallacea, when groups of this migrant fly beyond their normal wintering areas, land on isolated in the 
region and subsequently breed and speciate there.   Another example of migration dosing involves the 
Swainson’s Hawk, a long-distance, North America migratory raptor that has given r ise to both the 
Hawaiian Hawk and Galapagos Hawk via this spec iation process. Although the extent to which 
migration dos ing contributes to avian divers ity overall remains unc lear, it is  clear long-distance 
migration sometimes acts as an engine of biodiversity, and as such merits protection in its own right. 

9. CONSERVATION IN PROTECTED NETWORKS.  IT IS ENOUGH? 

The establishment of protected areas has been the core aspect of conservation action throughout 
the world. Initial actions to preserve nature have inc luded the creation of national parks, reserves, and 
sanctuaries. A pr incipal assumption of this action was that nature conservation was incompatible with 
human use and, sometimes, even human presence. From a scientific point of view, it is c lear that this 
approach was necessary, especially during the f irst half of the past century, when human attitudes 
toward biodivers ity were incomplete and wholesale transformation of natural landscapes was 
underway. Since then is land biogeography theory and metapopulation models, among others, have 
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resulted in a better apprec iation for the importance of ecologically-based reserve des ign that takes into 
account minimal areas and connectivity needed to sustain viable populations of species.  As a result, 
individual states and groups of states have begun to develop networks of reserves, which together can 
function to reduce the r isk of regional extirpation.  Examples include the European Union’s Natura 
2000 Network.  

That said there are relatively few examples of truly biologically functional networks of protected 
areas. This, together with the fact that climate models now suggest that significant fractions of the 
plant and animals we are now trying to protect inside existing Natural Park networks are going to be 
out of them in a few  decades, suggests that fundamental shift in reserve and network design is needed. 
Simply put if the existing components of biodiversity are to be preserved, a more f lexible reserve 
system compatible with human activit ies that promotes public participation and is complementary to 
the Natural park network is needed.  It is time to think about these new opportunities and obligations. 

10. TOWARD ADAPTIVE MANAGEMENT 

If existing natural park networks are not enough what can we do to preserve bird biodiversity in 
the face of Global Change? Now is the time to change our conservation policies. Obviously we don’t 
have a definitive answer but we do offer several suggestions.  

10.1 Establish a surve illance  ne twork fo r mig rato ry faun a at contine ntal scale   

Birds are wonderful indicators of biodiversity and environmental change, inc luding climate 
change. They are popular in Europe among birdwatchers, amateur naturalists, and professional 
scientists, and there are r ich sources of long-term data regarding their  abundances and distributions.  
As such they are perfect environmental sentinels of c limate change.  Their populations and, in 
particular their m igratory populations, should be monitored in the face of global c limate change.  This 
is especially so at important regional and continental bottlenecks. We recommend selecting several 
sites as the basis for a functional network of migration “watchtowers” for monitor ing changes in 
migration behaviour and populations of migratory birds in Europe. Especially we suggest the 
follow ing s ites: 

• The Strait of Gibraltar near Tarifa, Spain 
• Falsterbö in south-western Sweden 
• Elat in southern Israel 
• Fair Isle in northern Scotland 
• Texel in north-western Holland 
• South of Italy, inc luding the Strait of Messina 

Most of these sites already are conducting long-term monitor ing programs that started in the 
middle of 20th Century. These monitoring programs should continue and efforts should be made to 
collect and analyze data us ing a common protocol so that direct, inter-site comparisons are possible. 
International coordination is needed to accomplish this.  At the same time these s ites can work locally 
to introduce and build support among regional populations for charismatic m igratory birds, which can 
then become flagships for broader conservation issues. 

The above-mentioned watch sites are the minimum necessary to start. Obvious ly, as number of 
observatories in the network increases the quality of the information also increase. Therefore, the 
network must be open, free and constituted by independent watch sites, ideally as much as possible.    

In addition to developing a network of watchsites, we also need to agree upon a set of 
representative spec ies to be monitored.  These species should chosen on the basis of their utility as 
indicators of more diff icult to follow but highly significant biological var iables, including total 
biodivers ity, and early warning s ignals of loss of specif ic critical habitats. Specifically we recommend 
inc luding: 

Raptors and other soaring birds 

Among birds, raptors are one of the best indicators of biodiversity, including also additional 
features such a long histor ical data series, a generally well known ecology, an easy detection and 
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identif ication, a high level in trophic chains and a big s ize that make poss ible the use of a large set of 
technology difficult to use in smaller birds. Some raptor species are good examples of mountain fauna 
such as Golden Eagles (Aquila chrysaetos) or Bonelli’s Eagles (Hieraaetus fasciatus), a habitat under 
risk w ith the increas ing temperatures. Some raptors feed on my types of prey, whereas others 
specialize on certain taxonomic groups.  For example the Short-toed Eagle (Circaetus gallicus) feeds 
largely on reptiles Raptors inc lude many insectivorous species including small falcons and owls, bird-
eating spec ies inc luding large falcons and accipiters, mammals-eating species including hawks, eagles, 
and owls), and carr ion-eating spec ies including vultures and kites. So, a broad number of different 
aspects would be followed using raptors as indicators. Some other species of soaring birds such as 
storks and cranes would be inc luded.   

  
Figure from Sergio et al. (2005) showing the relationship between raptor community and 

biodiversity at different taxonomical levels. 
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From Bildstein (2001) 

Aquatic birds 

Aquatic birds should be included since they depend upon wetlands changes to which are 
expected to occur as a result of c limate change. So, several changes are expected in relation to 
abundance and distr ibution of waterfowl and waders. As in raptors, aquatic spec ies have been object 
of major attention by ornithologists and sc ientists for some time and we now possess long datasets 
regarding their distributions and abundances changes. Examples of aquatic birds that should be 
monitored inc lude the Greylag Goose (Anser anser) and the Ruff (Philomachus pugnax),  

Seabirds 

Because climate change is expected to affect sea levels especially in the Mediterranean basin, 
monitoring seabird species is highly recommended. Actually there are several programs following 
migration in this group of birds that must be maintained and coordinated at continental scale.  

Songbirds 

There is a long tradition of work on song birds throughout Europe. Different species of song birds 
depend upon different habitats and prey bases and 4-6 spec ies of these birds should be identif ied for 
focused monitor ing.  

To be effective, all these monitor ing efforts, and the resulting data, must be communicate to the 
scientific community for their  use and research, providing a good way to interchange new findings. 
The recent experience in the f irst international meeting on Bird Migration and Global Change, hosted 
in Algec iras (Spain, 2007), indicates the value of regular ly scheduled international meetings to favour 
the interchange of new ideas and recent f indings, as well as to coordinate monitoring efforts. 
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10.2 A ne w dynamic syste m of prote cted are as 

The establishment of protected areas has been the core aspect of conservation action for some 
time. European Union implemented also the Natura 2000 Network. This approach, while important 
and necessary is insufficient to prevent loss of biodivers ity that is moving across the continent. It is 
time to think about other complementary possibilities.  

Additionally to the Natura 2000 network, we recommend land custody or stewardship in the form 
kind of private voluntary agreements between landowners and a custody or stewardship agent (usually 
a non-profit organization) who dec ide to collaborate in protecting biodivers ity and land use through 
economic incentives for the land owner. Land custody provides a more f lexible approach to 
biodivers ity protection across a c limatically changing than does a more static network of government-
owned protected areas, and also increases a sense of public owner for the underlying natural resource. 
One option for increasing public interest in land custody would be to couple participation w ith tax 
incentives for land owners.  

In 1991, the Standing Committee of the Council of Europe adopted a recommendation (nº 25) on 
the conservation of natural areas outs ide protected areas proper. The recommendation indicates that 
that certain forms of action inc luding land custody have proved particular ly effective in the countries 
where they have been adopted and that flora and fauna conservation is possible only in the context of a 
regional planning policy conserving their environments and habitats, and goes on to encourage the 
granting of tax concessions to owners who comply w ith these objectives. Unfortunately there is no 
common policy for carrying this out.  

A second recommendation is to investigate the use of linear infrastructures including power-line, 
road, railway rights-of-ways as a supplementary w ildlife corridors, after adequate interventions.  A 
working example of this  approach involves REE, the main transporter of electrical power in Spain, 
which is now supporting an experimental project to create micro-islands under electr ic power-lines to 
increases local biodiversity and to create a net of ecological “stepping stones” across the country. The 
same idea could be applied to road and railway rights-of-ways, and to coastlines, which also could 
serve as movement corridors for plants and animals during periods of climate change.  
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